Particles and fields in fluid turbulence
نویسنده
چکیده
The understanding of fluid turbulence has considerably progressed in recent years. The application of the methods of statistical mechanics to the description of the motion of fluid particles, i.e., to the Lagrangian dynamics, has led to a new quantitative theory of intermittency in turbulent transport. The first analytical description of anomalous scaling laws in turbulence has been obtained. The underlying physical mechanism reveals the role of statistical integrals of motion in nonequilibrium systems. For turbulent transport, the statistical conservation laws are hidden in the evolution of groups of fluid particles and arise from the competition between the expansion of a group and the change of its geometry. By breaking the scale-invariance symmetry, the statistically conserved quantities lead to the observed anomalous scaling of transported fields. Lagrangian methods also shed new light on some practical issues, such as mixing and turbulent magnetic dynamo.
منابع مشابه
Mathematical Simulation for the Effects of Flow Control Devices in a Six- strand Tundish in Continuous Casting of Steel Billet
The method of continuous casting of steel is now often used in the metallurgical industry, due to the increasing demand for the production of high – quality steel. An important device of continuous casting machine is the tundish, in which a stabilized steel flow has a crucial effect on the quality and efficiency conditions of the continuous casting process. In this study fluid flows in a six – ...
متن کاملCFD Study and Energy Optimization of Industrial Double-Cyclone in HDPE Drying Process
In this paper, a double-cyclone is used as a gas-solid separator in the fluid bed-drying process to prepare dry HDPE powder from a wet feed of 56000 kg/hr. The quality of dry HDPE depends mainly on particles behavior and flow pattern in the dryer which affect the double-cyclones as an effective equipment in this process. Controlling of the inlet carrier gas causes excellent flow pattern, desire...
متن کاملTurbulence-induced Magnetic Fields and Structure of Cosmic Ray Modified Shocks
We propose a model for Diffusive Shock Acceleration (DSA) in which stochastic magnetic fields in the shock precursor are generated through purely fluid mechanisms of a so-called small-scale dynamo. This contrasts with previous DSA models that considered magnetic fields amplified through cosmic ray streaming instabilities; i.e., either by way of individual particles resonant scattering in the ma...
متن کاملVoronoi Fluid Particles & Tessellation Fluid Dynamics
We formalize the concept of fluid particle that it is heuristically introduced in textbooks of fluid mechanics. Fluid particles are regarded as portions of fluid that move along the flow field and they have an extension. A natural way of assigning an extension to a set of points is through a tessellation. With a minimum of physical input information a well-defined discrete fluid particle model ...
متن کاملExperimental detection of turbulent thermal diffusion of aerosols in non-isothermal flows
We studied experimentally a new phenomenon of turbulent thermal diffusion of particles which can cause formation of the large-scale aerosol layers in the vicinity of the atmospheric temperature inversions. This phenomenon was detected experimentally in oscillating grids turbulence in air flow. Three measurement techniques were used to study turbulent thermal diffusion in strongly inhomogeneous ...
متن کامل